RNA Immunoprecipitation and Microarray Analysis Show a Chloroplast Pentatricopeptide Repeat Protein to Be Associated with the 59 Region of mRNAs Whose Translation It Activates W

نویسندگان

  • Christian Schmitz-Linneweber
  • Rosalind Williams-Carrier
  • Alice Barkan
چکیده

Plant nuclear genomes encode hundreds of predicted organellar RNA binding proteins, few of which have been connected with their physiological RNA substrates and functions. In fact, among the largest family of putative RNA binding proteins in plants, the pentatricopeptide repeat (PPR) family, no physiologically relevant RNA ligands have been firmly established. We used the chloroplast-splicing factor CAF1 to demonstrate the fidelity of a microarray-based method for identifying RNAs associated with specific proteins in chloroplast extract. We then used the same method to identify RNAs associated with the maize (Zea mays) PPR protein CRP1. Two mRNAs whose translation is CRP1-dependent were strongly and specifically enriched in CRP1 coimmunoprecipitations. These interactions establish CRP1 as a translational regulator by showing that the translation defects in crp1 mutants are a direct consequence of the absence of CRP1. Additional experiments localized these interactions to the 59 untranslated regions and suggested a possible CRP1 interaction motif. These results enhance understanding of the PPR protein family by showing that a PPR protein influences gene expression through association with specific mRNAs in vivo, suggesting an unusual mode of RNA binding for PPR proteins, and highlighting the possibility that translational regulation may be a particularly common function of PPR proteins. Analogous methods should have broad application for the study of native RNA–protein interactions in both mitochondria and chloroplasts.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

RNA immunoprecipitation and microarray analysis show a chloroplast Pentatricopeptide repeat protein to be associated with the 5' region of mRNAs whose translation it activates.

Plant nuclear genomes encode hundreds of predicted organellar RNA binding proteins, few of which have been connected with their physiological RNA substrates and functions. In fact, among the largest family of putative RNA binding proteins in plants, the pentatricopeptide repeat (PPR) family, no physiologically relevant RNA ligands have been firmly established. We used the chloroplast-splicing f...

متن کامل

A Pentatricopeptide Repeat Protein Facilitates the trans-Splicing of the Maize Chloroplast rps12 Pre-mRNA W

The pentatricopeptide repeat (PPR) is a degenerate 35–amino acid repeat motif that is widely distributed among eukaryotes. Genetic, biochemical, and bioinformatic data suggest that many PPR proteins influence specific posttranscriptional steps in mitochondrial or chloroplast gene expression and that they may typically bind RNA. However, biological functions have been determined for only a few P...

متن کامل

Comparative bioinformatics analysis of a wild diploid Gossypium with two cultivated allotetraploid species

Background: Gossypium thurberi is a wild diploid species that has been used to improve cultivated allotetraploid cotton. G. thurberi belongs to D genome, which is an important wild bio-source for the cotton breeding and genetic research. To a certain degree, chloroplast DNA sequence information are a versatile tool for species identification and phylogenetic implications in plants. Different ch...

متن کامل

I-52: Maternal mRNA Metabolism duringOocyte-to-Zygote Transition

Background: Maternal mRNA degradation is a selective process that occurs in waves corresponding to important developmental transitions such as resumption of meiosis, fertilization and zygotic genome activation. It has been demonstrated that the number, position, and combination of 3 UTR cis-acting elements interacting with trans-acting protein factors regulate translation and mRNA stability. Ou...

متن کامل

The Pentatricopeptide Repeat Protein EMB2654 Is Essential for Trans-Splicing of a Chloroplast Small Ribosomal Subunit Transcript.

We report the partial complementation and subsequent comparative molecular analysis of two nonviable mutants impaired in chloroplast translation, one (emb2394) lacking the RPL6 protein, and the other (emb2654) carrying a mutation in a gene encoding a P-class pentatricopeptide repeat protein. We show that EMB2654 is required for the trans-splicing of the plastid rps12 transcript and that therefo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005